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Abstract

Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, 

but it remains unclear how effective these gloves are. The purpose of this study was to estimate 

tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the 

hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the 

appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of 

which can be classified as anti-vibration (AV) gloves according to the current AV glove test 

standard. The average transmissibility spectrum of each glove in each direction was synthesized 

based on spectra measured in this study and other spectra collected from reported studies. More 

than seventy vibration spectra of various tools or machines were considered in the estimations, 

which were also measured in this study or collected from reported studies. The glove performance 

assessments were based on the percent reduction of frequency-weighted acceleration as is required 

in the current standard for assessing the risk of vibration exposures. The estimated tool-specific 

vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or 

marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those 

vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce 

palm-transmitted vibrations in the range of 5%–58%, primarily depending on the specific tool and 

its vibration spectra in the three directions. The two AV gloves were not more effective than the 

other gloves with some of the tools considered in this study. The implications of the results are 

discussed.

Relevance to industry—Hand-transmitted vibration exposure may cause hand-arm vibration 

syndrome. Vibration-reducing gloves are considered as an alternative approach to reduce the 

vibration exposure. This study provides useful information on the effectiveness of the gloves when 

used with many tools for reducing the vibration transmitted to the palm in three directions. The 

results can aid in the appropriate selection and use of these gloves.
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1. Introduction

Prolonged, intensive exposure to hand-transmitted vibration may cause hand-arm vibration 

syndrome (HAVS) (Griffin, 1990; NIOSH, 1997). To help reduce such exposures, vibration-

reducing (VR) gloves have been designed not only to provide typical work glove functions, 

but also to isolate some vibrations transmitted to the hand-arm system (Rens et al., 1987; 

Goel and Rim, 1987; Reynolds and Jetzer, 1998; Jetzer et al., 2003). In principle, the 

vibration isolation effectiveness of a glove depends primarily on the dynamic properties of 

both the glove and hand-arm system (Dong et al., 2009); any factor affecting their properties 

may also influence glove effectiveness. It is difficult to judge these gloves without 

specifying their application conditions. Furthermore, the performances of available 

commercial VR gloves may vary significantly. To help select appropriate gloves, the 

International Organization for Standardization (ISO) has set forth a testing method and a set 

of criteria to classify anti-vibration (AV) gloves (ISO 10819, 1996, 2013). In other words, 

AV gloves are a subset of VR gloves; they are supposed to reduce more vibration 

transmitted to the hand than VR gloves that do not fully meet the criteria. Specifically, this 

test method requires measuring the glove vibration transmissibility of frequency-weighted 

acceleration at the palm of the hand along the forearm direction with a specified hand and 

arm posture while forces of 30 N grip and 50 N push are applied to a vibrating 40 mm 

cylindrical handle. According to the latest version of the standard (ISO 10819, 2013), the 

glove can be classified as an AV glove if it meets the following three criteria: (i) the 

transmissibility value in the middle-frequency range (25–200 Hz) is less than or equal to 

0.90; (ii) the transmissibility value in the high-frequency range (200–1250 Hz) is less than or 

equal to 0.60; and (iii) the glove is full fingered; the materials of the glove fingers are the 

same as those of glove palm; and the thickness of the glove fingers is more than 0.55 times 

that at the palm of glove.

Whereas the AV glove criteria basically constitute a pass/fail test, the required reductions do 

not generally represent actual vibration reductions of these gloves when used with specific 

tools. This is primarily for the following reasons:

a) The vibration attenuation effectiveness of a glove is tool vibration-specific 

(Griffin,1998; Rakheja et al., 2002; Dong et al., 2002a). No powered hand tool 

generates the idealized vibration spectrum required in the standardized glove test 

(ISO 10819,1996, 2013); as a result, the transmissibility values measured with 

the standard method are not directly applicable to any specific tool.

b) The glove effectiveness is direction-specific (Hewitt, 2010; McDowell et al., 

2013a). This is because the dynamic properties of the glove materials and the 

driving-point biodynamic responses may vary with direction (Dong et al., 2013). 

As above-mentioned, the standardized glove test prescribes that glove vibration 

transmissibility be measured only in the forearm direction.
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c) The glove effectiveness is also location-specific because the glove properties 

and the distribution of hand apparent mass generally vary with the locations of 

the glove and hand (Dong et al., 2009, 2013). This is also clearly reflected by 

the large differences between the vibration transmissibility spectrum of the 

glove measured at the palm and that measured at the fingers (McDowell et al., 

2013a; Welcome et al., 2014). Tool-specific glove performances at the palm and 

fingers should also be examined separately.

While the standard glove test is primarily intended to screen gloves (ISO 10819, 1996, 

2013), the tool-specific vibration isolation performances of gloves have to be determined 

using other methods. Intuitively, the vibration transmissibility of a glove can be measured 

during tool operations at workplaces. Because many factors may affect glove vibration 

transmissibility, it is usually difficult and expensive to reliably assess glove effectiveness at 

workplaces, as substantial variations among measurement data have been observed (Pinto et 

al., 2001). Probably for these reasons, only a few studies have used the direct measurement 

approach to investigate tool-specific vibration isolation effectiveness of gloves (Goel and 

Rim, 1987; Cheng et al., 1999; Pinto et al., 2001; Dong et al., 2002a, 2003).

As an alternative method, tool-specific performances of gloves can be estimated using the 

vibration transmissibility spectra measured in laboratory tests over a sufficiently broad 

frequency band and with tool vibration spectra measured at workplaces. This approach 

avoids the difficulties of direct measurement and takes advantage of the available 

experimental data. It is recommended as an optional method for estimating tool-specific 

vibration transmissibility in the glove test standard (ISO 10819, 1996, 2013). Several studies 

evaluated this transfer function method (Rakheja et al., 2002; Dong et al., 2002a; Welcome 

et al., 2012). Those studies demonstrated that VR glove transmissibility is largely 

independent of the vibration exposure spectrum. This has led to the replacement of the two 

excitation spectra used in the original glove test standard (ISO 10819, 1996) with a single 

excitation spectrum required in the revised test standard (ISO 10819, 2013). This also 

suggests that it is reasonable to approximate tool-specific glove performances using the 

transmissibility spectrum of a glove measured in the laboratory. However, the current 

literature contains only a few reports of tool-specific glove vibration transmissibility values 

along the forearm direction at the palm of the hand (Rakheja et al., 2002; Dong et al., 

2002a). Further studies are required to estimate the tool-specific performances of gloves in 

multi-axial vibration exposures.

Many tool vibration spectra can be found in the literature. Several studies reported the 

vibration transmissibility spectra of some typical VR gloves at the palm of the hand along 

the forearm direction (Dong et al., 2002a, 2002b, 2003, 2004, 2009, Welcome et al., 2011, 

2012). A recent study also reported their spectra in three orthogonal directions (3-D) 

(McDowell et al., 2013a). These experimental data have made it possible to estimate the 

tool-specific effectiveness of typical VR gloves at the palm of the hand in three orthogonal 

directions. Therefore, the specific aims of this study are to measure additional glove 

transmissibility spectra and tool vibration spectra for verifying and enhancing the database 

for such estimations, to synthesize the representative glove spectra using the available data, 

and to estimate the tool-specific effectiveness of VR gloves at the palm of the hand. The 
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measured spectra, together with archived data, are also used to further verify the most 

important assumption of this study: the vibration transmissibility spectrum of a glove is 

largely independent of the excitation conditions. Based on the estimated vibration reductions 

provided by the gloves, the appropriate selection and use of VR gloves for various vibrating 

tools or machines are discussed.

2. Methods

2.1. Vibration transmissibility spectra of gloves at the palm of the hand

2.1.1. Available 3-D transmissibility spectra—McDowell et al. (2013a) reported 3-D 

transmissibility spectra of six VR gloves and one regular work glove. The 3-D spectra were 

simultaneously measured on a 3-D vibration test system using a palm adapter method with 

hand and arm postures similar to those required in the standardized glove test (ISO 10819, 

1996, 2013). The basic trends and characteristics of the spectra are consistent with those 

predicted using a model of the glove-hand-arm system (Dong et al., 2013). These data were 

considered as part of the basis for synthesizing the transmissibility spectra. Specifically, 

three air bladder-filled gloves were tested in the reported study (McDowell et al., 2013a). 

Because these air bladder gloves exhibited similar 3-D transmissibility spectra, only one of 

them was considered in the current study. The regular work glove did not significantly 

isolate vibration; thus, that glove was not considered further in the current study. The three 

remaining VR gloves were manufactured from different materials and had some significant 

differences among their transmissibility spectra; they were included in the current study. The 

four VR gloves considered in this study are shown in Fig. 1. Their basic features are listed in 

Table 1.

Fig. 2 shows the basic test setups used in the measurement by McDowell et al. (2013a). The 

hand and arm postures used in the study are similar to those required in the standard glove 

test (ISO 10819, 1996, 2013). Seven adult males participated in the measurement with three 

hand force treatments (15 N grip + 30 N push, 30 N grip + 50 N push, and 45 N grip + 70 N 

push). For the purpose of the current study, the spectra measured with the middle force 

treatment (30 N grip and 50 N push) were selected to represent the average transmissibility 

spectra of the gloves in the tool operations. Unfortunately, because of the limitation of the 3-

D test system, the frequency range of the measured transmissibility spectra is only from 16 

to 500 Hz (McDowell et al., 2013a), which does not cover the full range of the frequencies 

(6.3–1250 Hz) required to assess hand-transmitted vibration exposure (ISO 5349-1, 2001). 

This study conducted some experiments to measure additional glove transmissibility spectra, 

which are described in the next subsection.

2.1.2. Measurement of additional transmissibility spectra in the x and y 
directions—The vibration spectra components at frequencies below 16 Hz cannot be 

ignored because the highest weighting is applied in this frequency range (ISO 5349-1, 

2001). Fortunately, these low-frequency components are not difficult to estimate because the 

transmissibility in this region is close to unity (Dong et al., 2004, 2005; Welcome et al., 

2011, 2012; Hewitt, 2010). This study used the data measured on 1-D test systems to fill in 

the missing spectra in this low-frequency range. Vibration components at frequencies above 

500 Hz are not critical, as only frequency-weighted acceleration is of concern in the current 
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study. This is for the following two reasons: (I) the frequency weighting is less than 0.025 at 

frequencies above 500 Hz (ISO 5349-1, 2001); and (II) the dominant weighted vibrations of 

the vast majority of tools or machines are observed at frequencies below 500 Hz (Griffin, 

1997). As an approximation, the missed spectra for this frequency range were also estimated 

using 1-D test data. While the transmissibility spectra of the four selected gloves along the 

forearm (z) directions have been sufficiently measured in our previous studies (Welcome et 

al., 2011, 2012), the spectra in the other two directions (x and y) were measured in the 

current study.

Fig. 3 shows the test setups and subject postures for the measurement in the x direction. 

They are similar to those used in the 3-D test shown in Fig. 2, except that the subject 

assumed a posture in which the forearm was 90° from the vibration direction, and the hand 

was subjected to vibration in the x direction. The same instrumented handle and palm 

adapter as used in the 3-D test were used in the current study. Five subjects participated in 

the experiment. Each subject was advised to position the palm adapter at the prescribed 

location on the palm and align it with the handle as in the 3-D test. Because the push force in 

the x direction could substantially affect the vibration of the instrumented handle on the 1-D 

test system, only grip force was applied in the test. To better simulate the palm force under 

the 30 N grip and 50 N push in the 3-D test, a grip force of 80 N was applied. The handle 

was rotated about the y-axis of the handle fixture by 90° so that the measurement direction 

of the grip force was the same as that in the 3-D test. The vibration spectrum (from 5 to 

1600 Hz) used in the 1-D test is shown in Fig. 4, which is very different from the spectrum 

used in the 3-D test (also plotted in Fig. 4), but it is identical to that specified in the revised 

version of ISO 10819 (2013) at frequencies above 25 Hz (also plotted in Fig. 4). The 

remaining test conditions and test procedures were the same as those used in the 3-D test 

(McDowell et al., 2013a). To minimize the effect of adapter misalignment on the evaluated 

transmissibility spectrum (Hewitt, 1998), a total vibration method was used to calculate the 

transmissibility (Dong et al., 2002b). Each transmissibility spectrum was expressed in the 

one-third octave bands from 6.3 to 1250 Hz.

To measure the vibration transmissibility spectra of the gloves in the y direction, a special 

instrumented handle was developed and used for the test, as shown in Fig. 5. The hand and 

arm postures are similar to those in the test for the x direction, except the hand was rotated 

90° about the forearm axis, as shown in Fig. 6. The palm adapter and the remaining test 

conditions, procedures, and calculation method are the same as those used in the x direction 

test. The slit in the glove shown in Fig. 6 was made for the alignment of the palm adapter 

with the handle vibration direction (Welcome et al., 2012; McDowell et al., 2013a).

2.1.3. Synthesis of the representative glove transmissibility spectra—For each 

glove in each direction, the average transmissibility spectrum of the 3-D and 1-D data was 

used to represent the spectrum from 16 to 500 Hz. The remaining spectra were from the 1-D 

data measured in this study or those measured in previous studies (Welcome et al., 2011, 

2012).
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2.2. Tool vibration spectra

Part of the tool vibration spectra used in this study was collected from our previous studies 

and literature (Dong et al., 2002a, 2003; McDowell et al., 2009, 2012, 2013b; Goglia et al., 

2003; Dewangan and Tewari, 2009). Some of these spectra were measured by the UK 

Health and Safety Laboratory (Pitts et al., 2012). The remaining part was measured in the 

current study. The tool vibration spectra were selected and treated using the following 

criteria and methods:

(i) The vibration spectra were measured with the standard method defined in ISO 

5349-1 (2001). Fig. 7 shows some examples of accelerometers installed on tool 

handles and the hand and arm postures for the vibration measurement in the 

current study.

(ii) As also shown in Fig. 7, the spectra were simultaneously measured in the three 

orthogonal translational directions.

(iii) The spectra of impact tools include no significant dc-shift (Griffin, 1990).

(iv) The vibration spectra were expressed in the one-third octave bands. If the 

original spectra do not include the full frequency range (6.3–1250 Hz), the 

missing values were taken as zero.

(v) If necessary and possible, the original coordinate axes (x, y, z) of the 

accelerometer for tool vibration measurement were switched to approximately 

match with those used in the measurement of the glove transmissibility spectra 

(Fig. 2). The axes of some data presented in this paper may be labeled 

differently from those in their original publications.

Some samples of tool vibration spectra are shown in Fig. 8. The basic trends of the spectra 

in the three directions for each tool are similar. This was also confirmed by the correlation 

analyses performed in this study. For all tools considered in this study, the vibration spectra 

in at least two directions are reliably correlated (r2 ≥ 0.40, p < 0.05). The coherence values 

at the major peak frequencies generally fall in the range of 0.5–1.0. In many cases, the 

coherence values are greater than 0.70.

2.3. Calculation of tool-specific glove transmissibility values

According to ISO 10819 (1996, 2013), the transmissibility value of frequency-weighted 

acceleration in each direction was calculated from

(1)

where Tx, Ty, and Tz are the glove vibration transmissibility spectra in three orthogonal 

directions (x, y, and z), ax, ay, and az are tool vibration spectra in three orthogonal directions, 

Wh is the frequency weighting factor for hand-arm vibration exposure defined in ISO 5349-1 

(2001), and ωi is the circular frequency in Rad/s corresponding to the ith frequency in the 

one-third octave bands from 6.3 to 1250 Hz.
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Similarly, according to the total vibration (vector sum of the three-axial vibrations) defined 

in ISO 5349-1 (2001), the transmissibility values for total vibration were calculated as 

follows (Dong et al., 2002b):

(2)

After the transmissibility value was obtained, the percent reduction for weighted 

acceleration (Rw) was calculated from

(3)

3. Results

3.1. Comparison of the glove transmissibility spectra measured on 1-D and 3-D test 
systems

The vibration transmissibility spectra of the four gloves measured in the 1-D and 3-D tests 

are shown in Fig. 9. Although the tests were performed on different test systems with 

different subjects under different excitations (McDowell et al., 2013a; Welcome et al., 2011, 

2012), the 1-D and 3-D spectra in the common frequency range (16–500 Hz) are similar. 

The agreement between the spectra of each glove in the z direction is especially good, 

probably because the applied hand forces were the same (30 N grip and 50 N push) in both 

3-D and 1-D tests. The 1-D data are also generally consistent with those reported in our 

other previous studies (Dong et al., 2002a, 2002b, 2003, 2004, 2009). These consistencies 

suggest that these transmissibility spectra are reliable.

3.2. Synthesized transmissibility spectra of the VR gloves in three directions

The representative transmissibility spectra of the four gloves for the 30 N grip and 50 N 

push were synthesized using the spectra shown in Fig. 9. The results are plotted in Fig. 10. 

Probably because air-cushioned elements are the major isolation materials of Gloves B and 

C, their transmissibility spectra and distributions in the three directions are very similar. On 

the other hand, although the major isolation material of Glove A is obviously different from 

that of Glove D, as described in Table 1, their transmissibility spectra and distributions in 

the three directions are similar. The spectra shown in Fig. 10 indicate that the two air-

cushioned gloves are generally more effective at reducing the vibration along the forearm or 

z direction, but they are less effective in the other two directions than the two non-air-

cushioned gloves.

3.3. Tool-specific transmissibility values of the VR gloves in three directions

As examples, Table 2 lists the frequency-weighted accelerations of several tools and their 

corresponding glove transmissibility values in the three directions calculated using Eq. (1) 

and total vibration transmissibility values calculated using Eq. (2). For low-frequency tools 

such as the vibrating fork and the pavement tamper, the transmissibility value in each 
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direction for each glove is close to unity because the corresponding transmissibility 

spectrum of each glove is close to unity in the low-frequency range, as shown in Fig. 10. For 

other tools, the transmissibility value of the gloves in the y direction is generally the highest, 

except for Glove A. Because Glove C is the most effective in the z direction, it can isolate 

more vibration from the chipping hammer than other gloves because the dominant vibration 

of the chipping hammer is in this direction. This is, however, not the case when the vibration 

is more spatially distributed among the three directions, as in the case of the impact wrench. 

In such a case, the total vibration transmissibility value is close to the average of those in the 

three directions, and Glove A becomes the most effective glove.

3.4. Tool-specific reduction of the total vibration (vector sum)

In this study, the vibration attenuation effectiveness of a glove is primarily quantified in 

terms of the percent reduction of the frequency-weighted vector sum acceleration 

transmitted to the palm of the hand, and it is calculated using Eqs. (2) and (3). To help 

identify the basic features of tool-specific glove effectiveness, the percent reduction values 

are classified into three groups. In the first group, the percent reductions are less than 5%, 

which are listed in Table 3, together with the source information of the tool vibration data 

and the weighted accelerations. These tools include low-frequency tools (with dominant 

vibration frequencies below 25 Hz) such as vibrating forks, paving tampers, and rammers. 

This group also includes tools with their major vibrations distributed in the y direction such 

as straight nutrunners and some rivet bucking bars.

In the second group, the percent reductions are between 5% and 10%, which are listed in 

Table 4. In the third group, the VR gloves reduce more than 10% of the vibrations 

transmitted from the tool to the palm of the hand, which are listed in Table 5. These tools are 

either high-frequency tools such grinders and saws or impact tools with fundamental impact 

rates above 25 Hz and their major high-frequency components in the x and/or z direction 

such as chipping hammers and riveting hammers. It is interesting to note that the vibration 

reductions of the gloves on the two handles of the same tool may be different. For example, 

when Gloves B, C, and D are used with the stone chisel, they reduce little vibration (≤2.2%) 

transmitted to the hand holding the chisel, as indicated in Table 4. This is because the impact 

vibration on the chisel is primarily along the axis of the chisel or the pure shear (y) direction 

of the hand. On the handle of the same chisel, however, these gloves can reduce more than 

15% of the palm-transmitted vibration, as presented in Table 5. This is because both 

vibration distribution and exposure direction are changed on the handle.

The average vector sum reduction of these four gloves for all three groups of tools is 8.2%. 

If the first group of tools is eliminated, the average reduction becomes 11.5%. Although 

Glove A cannot be classified as an AV glove (Welcome et al., 2012), as also noted in Table 

1, it is the most effective glove when used with many of the tools, as indicated in Tables 4 

and 5. Glove D is also occasionally among the most effective ones (e.g., Rivet hammer S1 

and Die grinder). The mean percent reduction of Glove A is not significantly different from 

that of Glove C in the second and third groups of tools (p ≥ 0.93). These two gloves are 

generally significantly (p < 0.05) or suggestively (p < 0.10) more effective than the other 
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two gloves. Although Glove B can be classified as an AV glove, as also noted in Table 1, it 

is generally the least effective of the four gloves.

4. Discussion

This study synthesized a group of representative vibration transmissibility spectra of four 

typical vibration-reducing gloves and applied them to estimate tool-specific vibration 

attenuation effectiveness of the gloves for reducing frequency-weighted vibrations 

transmitted to the palm of the hand in three orthogonal directions. The examination of the 

glove transmissibility spectra and their synthesis enhanced the understanding of the 

characteristics of VR gloves. The results of the study can be used to help select appropriate 

gloves for various vibrating tools.

4.1. The testing and evaluation methods for VR gloves

The large differences between the excitation spectra used in the 3-D and 1-D tests shown in 

Fig. 5 did not lead to substantial differences between the transmissibility spectra measured 

in the 3-D and 1-D tests in each direction for each glove, as shown in Fig. 9. This suggests 

that the glove transmissibility spectrum is not sensitive to the excitation spectra, which is 

consistent with that observed in our previous studies (Rakheja et al., 2002; Dong et al., 

2002a; Welcome et al., 2012). This basically suggests that it is acceptable to use the 

transmissibility spectra measured in the laboratory to crudely estimate tool-specific 

effectiveness of these VR gloves.

The results of this study also confirm that the effectiveness of a VR glove is direction-

specific. A glove that is most effective along the forearm direction measured in the standard 

test may not be the most effective in the other directions, as evident from the comparisons 

shown in Fig. 10 and Tables 3 and 4 This suggests that the results of the single-axis test 

adopted in the standard may not be sufficient to make a fair judgment of the overall 

performance of a VR glove. The single-axis method is also inconsistent with the standard 

method for assessing the risk of hand-transmitted vibration exposures (ISO 5349-1, 2001). 

The 3-D method proposed and applied in the current study is generally applicable for glove 

evaluations. The comparisons shown in Fig. 9 also suggest that it is acceptable to use the 3-

D spectra measured separately on a single-axis vibration test system to approximately 

represent the transmissibility spectra of the gloves subjected to 3-D vibration exposures. 

This may make it technically much easier to estimate the performances of VR gloves in 

multi-axial vibration exposures.

4.2. Selection of gloves

It is generally recommended to wear gloves in the operations of powered hand tools, 

provided that glove use is consistent with safe work practices and tool control. The 

performance of VR gloves for reducing vibration is only one of beneficial factors to be 

considered in the selection of appropriate gloves. The other beneficial factors include 

keeping hands warm and dry, reducing hand contact stressors, increasing friction force, and 

protecting hands from cuts, skin abrasions, burns, and chemical exposures. As noted in 

Table 1, VR gloves also usually substantially increase the grip effort (Wimer et al., 2010; 
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Welcome et al., 2011, 2012). Some of them may also greatly reduce finger dexterity and 

make it difficult for the fingers to apply triggering actions. These adverse effects may 

increase the potential for some hand injuries and safety risks (Silverstein et al., 1987). The 

optimized selection should consider all the beneficial and adverse factors, as well as features 

such as durability, cost, waterproofing etc.

As indicated in Table 2, none of the VR gloves could significantly reduce frequency-

weighted vibrations from low-frequency tools or tools that produce major vibrations in the 

axial direction of the tool handle. Regular work gloves are likely to be a better option for 

these tools because they may not substantially increase the grip effort and should allow for 

better finger dexterity than VR gloves. Some other approaches for reducing vibration 

exposures from such tools should be considered; such tactics include regular tool 

maintenance programs, procedures for identifying and procuring reduced-vibration tools, 

and sharing tool operations among team members (HSE, 2005).

As presented in Tables 4 and 5, VR gloves are likely to reduce palm-transmitted frequency-

weighted vibrations by 5%–58%, depending on the type of tool. Generally speaking, if the 

vibration is primarily distributed in the z direction or along the forearm direction, AV gloves 

certified according to ISO 10819 (2013) are the best choice, as demonstrated in Table 2. If 

the tool vibrations are relatively evenly distributed among the three directions, the overall 

percent reductions of the four gloves considered in this study are not practically substantially 

different from each other, as also indicated in Table 2. The best option depends primarily on 

the other glove benefits and functions, as well as their balance with any adverse effects. It 

should also be noted that two different gloves could be worn in the operation of a tool. For 

example, an operator could select Glove A for the hand controlling a stone chisel because 

that glove can reduce more axial vibration. For the other hand holding the chisel handle and 

controlling the trigger, Glove C or D might be a better choice for maximizing vibration 

reduction without losing as much finger dexterity.

4.3. Other applications and limitations of the estimated glove effectiveness

The results of an epidemiological study suggest that the current frequency weighing defined 

in ISO 5349-1 (2001) is acceptable for assessing the risk of the vibration-induced disorders 

in the wrist (Malchaire et al., 2001). The current frequency weighting is also similar to the 

biodynamic frequency weighting derived from the vibration power absorption measured at 

the palm of the hand (Dong et al., 2006, 2008). These observations suggest that the palm-

transmitted weighted vibration is likely to be associated with injuries and disorders in the 

palm-wrist-arm substructures. The results listed in Tables 4 and 5 may be used to estimate 

the related benefits for these substructures. However, gloves are likely to reduce less 

vibration transmitted to the fingers (Dong et al., 2009; Welcome et al., 2014). This suggests 

that it is not appropriate to directly use the listed reduction values to estimate a glove’s 

finger protection.

As mentioned in the introduction, some factors such as the applied hand forces, hand and 

arm postures, and handle geometries may affect the vibration transmissibility of a glove 

(Dong et al., 2004; McDowell et al., 2013a). Glove vibration transmissibility and tool 

vibration may also vary significantly among individuals (Dong et al., 2009; Laszlo and 
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Griffin, 2011; Welcome et al., 2012). Because averaged spectra were used in this study, the 

estimated percent reductions listed in Tables 3–5 may represent only the average 

effectiveness of gloves for reducing palm-transmitted vibration exposures. Furthermore, the 

glove transmissibility spectra used in this study were not measured under high amplitude of 

vibrations that may cause some contact separations at the glove-tool-hand interfaces and/or 

make the glove cushion bottom out; the glove transmissibility spectra in such a vibration 

exposure may have some differences from those shown in Figs. 9 and 10. The use of the 

palm adapter for transmissibility measurements may also influence the glove transmissibility 

(Dong et al., 2005). These observations suggest that the estimated reductions listed in the 

tables are unlikely to be precise for every possible working condition and each individual. 

The listed reductions may only be considered as crude approximations of general glove 

performance.

5. Conclusions

This study proposed and applied an approximation method for estimating tool-specific 3-D 

performances of four typical vibration-reducing gloves for attenuating frequency-weighted 

vibrations transmitted to the palm of the hand. Besides the reported evidence supporting this 

method, it was further justified by the following observations from the current study: the 3-

D transmissibility spectra of the gloves simultaneously measured under a 3-D vibration 

excitation were similar to those separately measured in each direction under different 

excitations on a 1-D test system. This similarity suggests that glove transmissibility is not 

sensitive to the input vibration, and it is acceptable to approximately predict the palm-

transmitted 3-D vibrations using tool vibration spectra along with measured glove vibration 

transmissibility spectra.

The results of this study demonstrate that vibration-reducing gloves do not significantly 

reduce (<5%) vibrations generated by many low-frequency (<25 Hz) tools or those vibrating 

primarily along the axis of the tool handle. When used with other tools, VR gloves can 

reduce palm-transmitted vibration in the range of 5%–58%, depending on the specific tool 

and vibration spectra. While gloves classified as anti-vibration gloves according to the 

standard glove test are generally more effective along the forearm direction than other VR 

gloves, AV gloves may be less effective in the other two directions. As a result, in some 

cases, non-AV gloves can be more effective than AV gloves at reducing palm-transmitted 

triaxial vector sum vibrations. These observations suggest that the single-axis method 

defined in the glove test standard may not provide a fair judgment of VR gloves, and AV 

gloves classified according to the standard may not be the best choice in some cases. An 

optimized glove selection should consider 3-D vibration transmissibility values. The glove 

transmissibility spectra synthesized in this study can be used to roughly estimate the 

transmissibility values for any given tool vibration spectra. The estimated tool-specific 

vibration reductions at the palm of the hand, along with consideration for each glove’s other 

features and functions, may be applied to perform preliminary glove selection for the 

operations of some specific powered hand tools. However, as the glove effectiveness may 

vary significantly with working conditions and individuals, the estimated data may not be 

used to predict the specific performances of the gloves for each individual at each 

workplace. Furthermore, the vibration reductions at the palm of the hand do not fully 
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represent the performances of the gloves for hand protection. Because these gloves may not 

effectively reduce finger-transmitted vibrations, it is on the conservative side to disregard 

glove vibration reductions in risk assessments of hand-transmitted vibration exposures.
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Fig. 1. 
The gloves used in the study and their major vibration isolation materials: Glove A – thick 

gel pad; Glove B – cellular air bubbles; Glove C – air bladder with pump; and Glove D – 

dipped neoprene.
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Fig. 2. 
The measurements of glove transmissibility spectra at the palm of the hand in the three 

orthogonal directions (3-D: x, y, and z) using a palm adapter on a 3-D hand-arm vibration 

test system (McDowell et al., 2013a).
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Fig. 3. 
The measurement of glove transmissibility at the palm in the x direction using a palm 

adapter on a 1-D vibration test system.
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Fig. 4. 
Comparisons of the excitation spectra used in the measurements of glove transmissibility 

spectra in the 1-D and 3-D test systems and that in the revision of the ISO 10819 (2013).
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Fig. 5. 
A sketch of the instrumented handle for the measurement of glove transmissibility in the y 

direction.
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Fig. 6. 
The measurement of glove transmissibility at the palm in the y direction using a palm 

adapter on a 1-D vibration test system.
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Fig. 7. 
Examples of accelerometers mounted on several tools and the hand grip postures in the 

measurements of tool vibrations.
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Fig. 8. 
Examples of tool vibration spectra used in the study.
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Fig. 9. 
Comparisons of the transmissibility spectra of the gloves measured on a 1-D test system 

with those measured on a 3-D vibration test system (McDowell et al., 2013a).
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Fig. 10. 
Vibration transmissibility spectra of the four gloves synthesized using the data measured at 

the palm of the hand in the three orthogonal directions.
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Table 1

Major features of the selected vibration-reducing gloves.

Glove ID Major AV materials AV glove classification
according to ISO 
10819 (2013)
(Welcome et al., 2011)

Grip strength 
reduction
(%) (Welcome 
et al., 2011)

Other features and potential problems

A Thick gel pad No 42 Bulky and low finger dexterity; good thermal feature; 
low
contact stress

B Cellular air bubbles Yes, barely. 34 Uneven contact stress due to distributed air bubbles; 
could
lose local AV function from the air leak from an air 
cell.

C Air bladder with pump Yes, with a good margin 31 Requires pumping every use; could lose the major AV
function from air leak at any location.

D Dipped neoprene No 26 Inexpensive; comfortable.
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Table 2

Examples of the tool frequency-weighted accelerations (Aw) and their corresponding transmissibility values 

(Tw) in the three directions (xh, yh, zh) calculated using Eq. (1) and total vibration transmissibility values 

calculated using Eq. (2).

Tool Vibrating fork Paving tamper

Direction x y z Sum x y z Sum

Aw (m/s2) 5.3 5.1 10.1 12.7 11.4 10.2 4.3 18.2

Tw Glove A 1.02 1.05 1.03 1.04 0.98 1.01 0.99 1.01

Glove B 0.99 1.01 1.00 1.01 0.99 1.01 0.97 1.01

Glove C 0.99 1.00 1.01 1.01 0.98 1.00 0.96 1.00

Glove D 0.98 1.01 1.03 1.02 0.97 0.99 0.97 0.99

Tool Chipping hammer Riveting hammer

Direction x y z Sum x y z Sum

Aw (m/s2) 2.8 2.8 11.6 12.3 6.8 8.3 17.9 20.8

Tw Glove A 0.78 0.96 0.94 0.93 0.79 0.90 0.96 0.93

Glove B 0.95 1.07 0.90 0.92 0.93 1.09 0.92 0.95

Glove C 0.90 1.07 0.87 0.88 0.90 1.09 0.89 0.93

Glove D 0.80 0.97 0.92 0.92 0.83 0.99 0.94 0.94

Tool Pavement cutting saw Reciprocating saw

Direction x y z Sum x y z Sum

Aw (m/s2) 8.4 5.3 6.8 12.1 2.5 2.5 4.9 6.0

Tw Glove A 0.77 0.91 0.90 0.85 0.78 0.87 0.87 0.86

Glove B 0.82 0.98 0.83 0.86 0.89 1.11 0.82 0.88

Glove C 0.85 0.99 0.77 0.85 0.88 1.08 0.76 0.84

Glove D 0.78 0.99 0.85 0.85 0.81 1.02 0.85 0.87

Tool Impact wrench Impact drill

Direction x y z Sum x y z Sum

Aw (m/s2) 4.7 3.7 4.2 7.3 8.7 8.4 6.4 14.4

Tw Glove A 0.66 0.86 0.89 0.79 0.76 0.80 0.87 0.84

Glove B 0.86 1.04 0.84 0.91 0.93 1.11 0.83 0.95

Glove C 0.82 1.06 0.78 0.88 0.90 1.09 0.79 0.93

Glove D 0.72 0.93 0.87 0.83 0.84 0.96 0.86 0.90

Int J Ind Ergon. Author manuscript; available in PMC 2015 December 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dong et al. Page 26

Table 3

The first group of tools and working conditions in which the estimated reductions of the frequency-weighted 

total vibrations are less than 5% for any of the four VR gloves (negative value means amplification) (note: the 

tool vibration spectra without specifying the source were measured in the current study).

Tool Available tool information and working conditions Aw (m/s2) Percent reduction (%)

Glove A Glove B Glove C Glove D

Vibrating fork Cleaning simulated beach contaminated by leaked
oil (McDowell et al., 2013b)

12.7 −3.7 −0.9 −0.9 −2.2

Paving tamper Tamping asphalt pavement 18.2 −1.0 −0.9 0.5 0.8

Floor rammer Ramming sand/cement mix in to mould (Pitts et al., 2012) 23.7 −1.2 −1.1 0.1 0.7

Bench rammer Ramming sand/cement mix in to mould (Pitts et al., 2012) 30.5 −3.1 −0.1 0.2 −0.6

Hand-held tractor 6.7 kW; transportation at 1.31 m/s; rota-tilling at 0.45 
m/s;
rota-puddling at 0.45 m/s (Dewangan and Tewari, 2009).

6.7 −2.4 0.5 1.9 1.2

A low vib. wrench Tightening 10 large nuts on a simulated work station
(McDowell et al., 2009)

2.7 0.6 1.7 2.7 2.1

Straight nutrunner 1 Tightening machine screws to secure refrigerator door 
hinges

2.5 0.1 1.2 1.3 1.2

Straight nutrunner 2 Tightening machine screws to secure refrigerator door 
hinges

2.3 3.4 4.3 4.8 4.3

Pistol nutrunner Installing machine screws to secure adapters in 
refrigerator

2.6 2.5 2.3 3.3 3.1

Hilock gun Installing Hi-Lok style fasteners in helicopter frames 1.8 −0.9 −0.3 −0.1 0.1

Shear gun Cutting sheet metal 5.4 −2.7 0.2 0.9 −0.5

Terry motor Installing Hi-Lok style fasteners in helicopter frames 1.9 0.8 1.8 2.4 1.9

CH bucking bar Installing Hi-Lok style fasteners in helicopter frames 15.8 4.1 4.1 4.8 3.4

DF bucking bar Installation of rivets in helicopter frames 28.0 2.2 3.4 4.1 3.2

Foot bucking bar Installation of rivets in helicopter frames 12.6 3.9 1.7 2.3 2.6

ARO gun Installation of panels on the backside of refrigerator 5.3 0.2 3.1 3.8 0.9

Screw gun 1 Attaching a palette-like skid plate to the bottom of 
refrigerator

4.2 −1.0 −0.2 0.4 0.5

Screw gun 2 Installation of a pan at the bottom of refrigerator 5.6 −2.9 −1.0 −0.2 −1.0

Rivet hammer 2 Riveting airplane frames (McDowell et al., 2012) 15.9 3.9 4.2 4.7 3.9

Cherry max gun Riveting Cherry-Max style rivets 3.7 2.9 −8.4 −4.2 −6.3

Heavy rotary hammer Electricity 110 V, 11 kg, drilling concrete with 32 × 250 
mm
masonry bit (Pitts et al., 2012)

18.9 −5.4 1.6 3.1 1.7

Mean 10.5 0.0 0.8 1.7 1.0
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Table 4

The second group of tools and working conditions in which the estimated reductions of the frequency-

weighted total vibrations are in the range of ≥5% and ≤10% for at leas one of the four VR gloves (note: the 

tool vibration spectra without specifying the source were measured in the current study).

Tool Working conditions and data sources Aw (m/s2) Percent reduction (%)

Glove A Glove B Glove C Glove D

Paving breaker Breaking damaged pavement (Dong et al., 2003) 31.6 2.7 5.1 6.5 4.5

Impact wrench 3 Tightening 10 large nuts on a simulated work station
(McDowell et al., 2009)

9.4 7.7 5.9 7.0 6.8

Impact wrench 4 Tightening 10 large nuts on a simulated work station
(McDowell et al., 2009)

8.3 7.3 4.7 5.7 5.9

Rivet hammer 1 Riveting airplane frames (McDowell et al., 2012) 20.8 7.1 5.2 7.2 6.0

Rivet hammer 4 Riveting airplane frames (McDowell et al., 2012) 29.7 7.2 6.7 8.5 6.5

Rivet hammer 5 Riveting airplane frames (McDowell et al., 2012) 13.6 8.1 6.6 8.3 7.5

Rivet hammer 6 Riveting airplane frames (McDowell et al., 2012) 18.0 5.0 5.1 6.2 5.0

L bucking bar Installation of rivets in helicopter frames 7.8 9.8 1.3 2.3 2.8

TR bucking bar 1 Installation of rivets in helicopter frames 14.6 8.9 1.7 2.3 2.6

TR bucking bar 2 Installation of rivets in helicopter frames 21.4 4.1 7.2 9.6 6.6

Screw gun 3 Installing machine screws to secure damper cover in 
refrigerator

3.1 3.3 5.0 5.8 4.6

Straight nutrunner 3 Tightening machine screws to secure refrigerator door 
hinges

3.0 6.2 7.4 8.5 7.1

Angular nutrunner Installing machine screws to secure refrigerator door hinge 
pins

2.9 3.5 5.8 7.5 5.1

Stone chisel Chiseling granite with 1 inch masonry chisel (Pitts et al., 
2012)

19.8 8.1 −1.7 2.2 −2.5

Mean 14.6 6.4 4.7 6.3 4.9
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Table 5

The third group of tools and working conditions in which the estimated reductions of the frequency-weighted 

total vibrations are greater than 10% for at least one of the four VR gloves (note: the tool vibration spectra 

without specifying the source were measured in the current study).

Tool Working conditions and data sources Aw (m/s2) Percent reduction (%)

Glove A Glove B Glove C Glove D

Chipping hammer A 6.6 kg chipping hammer; standard chipping hammer test
(Dong et al., 2003)

11.0 8.9 11.8 15.6 10.9

Chipping hammer B 6.9 kg chipping hammer; standard chipping hammer test
(Dong et al., 2003)

12.3 6.6 8.3 11.6 7.9

Impact drill A 3 kg impact drill; drilling a concrete plate 14.4 15.9 5.1 6.5 9.6

Impact drill B 6 kg impact drill; drilling a concrete plate 10.7 6.1 8.4 10.9 9.4

Impact drill C Electric 110 V, 8 mm masonry bit, drilling concrete 
block
(Pitts et al., 2012)

20.2 57.8 35.1 33.6 44.9

Pneumatic Rock drill 15.6 kg, drilling concrete (Pitts et al., 2012) 11.7 9.3 12.5 16.1 11.4

Reciprocating saw Cutting a concrete plate 6.0 14.4 11.8 15.9 13.0

Chain saw 4.9 kg, idling (Pitts et al., 2012) 9.9 15.2 14.6 14.2 14.9

Clay spade Digging a hole 27.3 9.3 10.2 11.7 9.6

Pavement cutting saw Cutting asphalt pavement 12.1 15.3 14.5 15.4 15.0

Tractor driving wheel A small diesel tractor (22 kW) with 4-wheel drive; idling 
and
fully loaded.

16.8 8.5 12.4 17.3 11.0

Impact wrench 1 Tightening 10 large nuts on a simulated work station
(McDowell et al., 2009)

7.3 21.0 9.5 12.3 17.4

Impact wrench 5 Tightening 10 large nuts on a simulated work station
(McDowell et al., 2009)

5.5 12.5 8.8 11.4 11.3

Rivet hammer 3 Riveting airplane frames (McDowell et al., 2012) 28.5 15.3 12.6 16.9 14.1

Rivet hammer 7 Riveting airplane frames (McDowell et al., 2012) 21.2 12.8 14.2 18.0 13.6

Rivet hammer 8 Riveting airplane frames (McDowell et al., 2012) 21.2 12.0 12.8 16.5 12.6

Rivet hammer S1 Riveting helicopter frames 3.5 22.8 21.5 22.1 22.8

Rivet hammer S2 Riveting helicopter frames 2.6 13.2 13.4 15.6 13.2

Rivet hammer S3 Riveting helicopter frames 2.7 11.3 7.7 9.1 10.3

Rivet hammer S4 Riveting helicopter frames 5.7 12.3 12.7 14.0 12.4

Angular grinder Electricity 240 V, cutting paving slab with 230 diamond 
wheel
(Pitts et al., 2012)

10.1 11.4 12.2 14.8 12.6

Angular grinder Surface grinding of helicopter frames 5.7 10.6 13.8 16.7 11.7

Die grinder Fine surface grinding of helicopter frames 2.0 15.7 13.7 13.3 15.2

Drill Drilling holes to prepare for riveting 2.9 13.2 15.1 17.5 15.0

Palm hammer Pounding the plastic light covers into place in 
refrigerator

17.0 11.1 16.0 21.8 12.7

Air hammer Pounding the rubber drain plug into place in refrigerator 9.9 18.6 11.8 16.0 13.6

Handle of atone chisel Chiseling granite with 1 inch masonry chisel (Pitts et al., 
2012)

21.4 16.5 15.0 17.0 16.1

Hedge trimmer 45 cm blade, trimming hedge (Pitts et al., 2012) 13.7 15.8 13.0 13.4 13.4

Strimmer Strimming grass (Pitts et al., 2012) 7.4 16.2 7.9 8.9 10.1
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Tool Working conditions and data sources Aw (m/s2) Percent reduction (%)

Glove A Glove B Glove C Glove D

Multi-use tool Electricity 110 V, cutting 20 mm chipboard with a 35 
mm
oscillating blade (Pitts et al., 2012)

13.9 37.6 10.4 17.4 19.0

Needle scaler Scaling rusty metal with 19 × 3 mm chisel needle (Pitts 
et al., 2012)

11.9 15.1 8.2 7.3 6.2

Rand orbit sander Preparing train carriage for repainting with 320grit 
aluminum oxide
(Pitts et al., 2012)

4.8 9.0 11.4 16.8 9.6

Triple headed scabbler Scabbling concrete (Pitts et al., 2012) 12.8 5.1 7.2 7.4 10.3

Mean 11.6 15.0 12.5 14.9 13.7
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